Issue 35, 2021

Modeling magnetic interactions in high-valent trinuclear [Mn3(IV)O4]4+ complexes through highly compressed multi-configurational wave functions

Abstract

In this work we apply a quantum chemical framework, recently designed in our laboratories, to rationalize the low-energy electronic spectrum and the magnetic properties of an homo-valent trinuclear [Mn3(IV)O4]4+ model of the oxygen-evolving center in photosystem II. The method is based on chemically motivated molecular orbital unitary transformations, and the optimization of spin-adapted many-body wave functions, both for ground- and excited-states, in the transformed MO basis. In this basis, the configuration interaction Hamiltonian matrix of exchange-coupled multi-center clusters is extremely sparse and characterized by a unique block diagonal structure. This property leads to highly compressed wave functions (oligo- or single-reference) and crucially enables state-specific optimizations. This work is the first showing that compression and selective targeting of ground- and excited-states wave functions is possible for systems with three magnetic centers that are not exactly half-filled, and that potentially exhibit frustrated spin interactions. The reduced multi-reference character of the wave function greatly simplifies the interpretation of the ground- and excited-state electronic structures, and provides a route for the direct rationalization of magnetic interactions in these compounds, often considered a challenge in polynuclear transition-metal chemistry. In this study, strong electron correlation effects have explicitly been described by conventional and stochastic multiconfigurational methodologies, while dynamic correlation effects have been accounted for by multiconfigurational second order perturbation theory, CASPT2. Ab initio results for the [Mn3(IV)O4]4+ system have been mapped to a three-site Heisenberg model with two magnetic coupling constants. The magnetic coupling constants and the temperature dependence of the effective magnetic moment predicted by the ab initio calculations are in good agreement with the available experimental data, and confirm the antiferromagnetic interaction among the three magnetic centers, while providing a simple and rigorous description of the noncollinearity of the local spins, that characterize most of the low-energy states for this system.

Graphical abstract: Modeling magnetic interactions in high-valent trinuclear [Mn3(IV)O4]4+ complexes through highly compressed multi-configurational wave functions

Article information

Article type
Paper
Submitted
16 Jul 2021
Accepted
19 Aug 2021
First published
24 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 19766-19780

Modeling magnetic interactions in high-valent trinuclear [Mn3(IV)O4]4+ complexes through highly compressed multi-configurational wave functions

G. Li Manni, Phys. Chem. Chem. Phys., 2021, 23, 19766 DOI: 10.1039/D1CP03259C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements